

The Nibbles and Bits of SSD Data Integrity

Earl T. Cohen
Flash Components Division
LSI Corporation

What is Data Integrity?

1. Maintaining and assuring the accuracy and consistency of data over its entire life-cycle.

http://en.wikipedia.org/wiki/Data_integrity

2. Don't "foul" up the data!

Aspects of Data Integrity

- Knowing there was an error!
 - End-To-End Integrity Checking

- Internal ECC/parity, address corruption checks, ...
- Issues here common to all storage devices
- Preventing/Correcting Errors
 - Robust Error Correction Beat the UBER
 - But watch out for performance suffering!
 - Sometimes the cost of getting your data is high...
- This talk: preventing/correcting errors

Why ECC – Where's My Data?

What Your Data Really Looks Like

Read Retry - Finding Your Data!

- Adjust Vref until you can recover data
 - Naïve approach linear search
 - Sophisticated approaches...
 - Tracking, interpolation, ...
- How long will it take you to find your data?

LSI

LDPC - Coding Headroom

- LDPC is an iterative coding technique
 - More run-time ⇒ better correction
 - But lower throughput
 - More information (read retry) ⇒ better correction
 - BCH: binary use of individual read retries
 - LDPC: soft-decision use of all read retry information
- Optimize for throughput
 - But be able to use coding headroom when needed

What Coding Headroom Looks Like

LDPC - More Efficient Read Retry

- Time to data is a key metric
 - How many read retries are required to "find" data?
 - Soft-decision decoding using information from read retries can reduce time to data

Convert small number of read retries to LLR (Log Likelihood Ratio)

So When Do We Need Strong ECC?

- That depends on ...
 - How often you want to read retry
 - And performance consequences thereof
 - Pay one Tr per read retry!
 - But it may let you find a point with fewer errors
- For a good fraction of the P/E cycle lifetime
 - We don't need very strong ECC
 - But late in life, read retry may be required!
 - Is there cost in having ECC constant over lifetime?

When Do You Need (Strong) ECC?

RBER vs. P/E Cycles

How Much ECC and When?

1KB BCH Correction Strength vs. RBER

The Power of 3%

Fullness, Write-Amp, and Effect of 3% Extra OP on P/E Cycles

-3% Capacity Boost Impact

You Want the 3%! FTL Implications...

- Goal: maximize use of flash page for user data
 - User Data vs. ECC changes over lifetime
 - User Data vs. ECC changes for ...
 - Stronger and weaker blocks/pages/...
- Problem: typical 4KB write doesn't pack nicely into flash pages any more...
 - User portion of flash page size "borrows" some of the spare normally used for ECC

Mapping Scheme for VFTLs (FMS 2012)

- How to map the LBA to data location in flash?
 - Any access must read an integer # of ECC units
 - Only need to point to first one and how many

Mapping Scheme for VFTLs with Variable User Flash Page Size

- Data spans any number of ECC units
- Number of ECC units per page and/or amount of data per ECC unit can vary

- NAND flash error rates continue to increase while datasheet lifetimes decrease
- ECC needs of NAND vary over lifetime
- Design to take advantage of this:
 - User powerful coding with headroom
 - Design your FTL to optimize for this variability
- Maintain data integrity while maximizing throughput and performance

LSI is Accelerating Flash Storage Innovation

- Attend the LSI keynote on Thursday 8/15 @ 11:30am
 - Optimizing Flash Controller Technology for Next-Gen Flash
 Greg Huff, LSI Senior Vice President and CTO
- Visit us at booth #402
 - Experience new LSI flash storage innovations
 - See live demos of LSI SandForce Driven SSDs
 - Enter to win SandForce Driven SSDs

